Die Entwicklung von Technologien zur automatischen Analyse und Annotation von audiovisuellen Daten erfordert fundierte Kenntnisse in den Bereichen Signalverarbeitung und Maschinelles Lernen sowie ein gutes Verständnis der zugrundeliegenden Anforderungen.
Eine weitere Herausforderung stellen die multimodale Analyse und Orchestrierung dar: Die Extraktion von Metadaten aus Audio-, Video- und Bilddateien umfasst eine Vielzahl von Prozessen, die von der Vorverarbeitung über die Merkmalsextraktion bis hin zur Klassifizierung reichen. Dabei werden unterschiedliche Methoden und Technologien eingesetzt, die flexibel integriert und orchestriert werden müssen. Die Integration von heterogenen Daten aus unterschiedlichen Quellen und Formaten erfordert zudem die Auswahl oder Entwicklung geeigneter Datenmodelle und Metadaten-Standards. Medienarchive zeichnen sich häufig durch große Datenmengen aus, was besondere Anforderungen an die Systemarchitektur und die Effizienz und Optimierung der eingesetzten Algorithmen stellt.
Darüber hinaus beschäftigen wir uns mit Metadaten-Standards und der Integration und Orchestrierung von Analyse-Komponenten. Wir adressieren zudem Datenschutzfragen und andere Aspekte vertrauenswürdiger KI, um die Bereitstellung von umfassenden Lösungen für konkrete Anwendungsanforderungen zu ermöglichen.